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We present a method to solve numerically two-dimensional Stokes problems on
exterior domains. Our scheme is based on the fully discrete BEM—FEM formulation
proposed in [21] whose main advantage is that only elemental quadratures are used
to approximate the weakly singular boundary integrals. We show in this article that it
is possible to maintain this important property without using curved triangles in the
discretization process. This modification makes the method easier to implement and
the numerical experiments reveal that it still keeps the optimal order of convergence
of the original scheme.

We also introduce in this paper a new iterative method to solve the complicated
linear systems of equations that arises from this type of BEM—FEM discretiza-
tions.  © 2001 Academic Press

Key Words:exterior Stokes problems; singular integral equations; finite element
methods; boundary element methods.

1. INTRODUCTION

The finite element method (FEM) and the boundary element method (BEM) are we
known procedures to approximate solutions of partial differential equations. On the ¢
hand, the boundary element method is appropriate to solve problems in unbounded don
with the restriction that the equation should be linear, homogeneous, and with cons
coefficients. On the other hand, the finite element method only works on bounded dom.
but it may be used for nonlinear and nonhomogeneous equations. Therefore, the advan
of each method compensate the deficiencies of the other one. Often, it is necessa
combine both of them to solve problems in exterior domains.

Much progress has been made in the numerical analysis of these methods since the
BEM-FEM coupling was introduced at the beginning of the 1980s; cf. [5, 11, 12, 17, 2
21, 22]. However, alot remains to be done before these coupling procedures become po
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tools for engineering calculations. For example, little is known about efficient algorithr
to solve the complicated linear systems that arise from these formulations. Furtherm
the matrix assembly process requires the computation of integrals with nearly singt
integrands over the auxiliary boundary. The design of efficient algorithms for this task is
great importance in order to improve the practicability of the method. Here, we will shc
how to handle these problems in the case of an exterior Stokes system.

The first BEM—FEM procedure for this problem was introduced by Sequeirain [22]. Tl
formulation of Sequeira relies on the so-caltate boundary integral approadhtroduced
by Johnson and Nedelec for the Laplace equation [17]. The general Johnson—Ned
procedure consists of dividing the unbounded domain into two subregions, a bounded ir
region and an unbounded outer one, by introducing an auxiliary common boundary. T
division is done so that the support of the right-hand side of the equation (i.e., the extel
forces) falls into the inner domain. An adapted Green formula, which makes use of
fundamental solution of the Stokes problem, gives an integral representation of the solu
in the exterior domain. Next, this representation is used to deduce a nonlocal conditior
the auxiliary boundary for the problem in the inner region. We point out that it is importa
to choose a smooth artificial interface in order to ensure the compactness of the double-|
potential which is essential for the analysis of the discrete problem, cf. [17, 20-22].

Usually, the discrete problem is posed on polygonal approximations of the auxilic
boundary. This strategy has a serious drawback since it renders difficult the approxil
tion of the nearly singular boundary integrals by simple quadratures; see [17, 22, 23]
more efficient method has been recently proposed in [21], where the integral operators
discretized on their natural boundary (the regular auxiliary interface); see also [20]. Thi
authors are able to design a fully discrete formulation for the exterior Stokes system f
requires few kernel evaluations while preserving the stability and convergence proper
which are obtained when the integrals are computed exactly. This discretization met|
relays on exact triangulations of the domain. Hence, curved triangles are needed all a
the auxiliary interface.

The aim of this paper is to show that actually one can find a compromise between
two previous discretization methods. We use straight triangles for the finite element y
and discretize the boundary integral operators on the (regular) auxiliary boundary. -
numerical experiments obtained in this paper show that this simplification does not aff
the convergence properties proven in [21] for the original method.

The second objective of the paper concerns the algorithm proposed to solve the ra
complicated linear systems of equations that arise from our BEM—-FEM formulation of t
Stokes problem. We use an iterative method that allows us to uncouple the boundary an
finite element methods. This means that at each iteration step we have to solve sequen
a usual Stokes problem by finite elements and a boundary integral equation. The advar
of this method is that we do not need to store the huge, unstructured, and nonsymm
global matrix (see (19)) and the problems we have to solve during the iteration process
standard. Furthermore, we see from the numerical experiments described in this papel
the method is stable in the sense that the number of iterations does not increase witt
number of unknowns.

The paper is organized as follows: In Sections 2 and 3 we introduce the model problem
formulate its Galerkin discretization. We provide the corresponding fully discrete scheme
Section 4. In Section 5 we present an iterative method to solve the system of linear equa
Finally, we give our numerical results in Section 6 and the conclusions in Section 7.
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In the sequel, small boldface letters (capital boldface resp.) will denote vectors or ve
valued functions (matrices or matrix valued functions resp.). VectoR¢ iare always to
be understood as column vectors, and subscripts will index their different components.
superscriptr will denote transposition of a matrix and a dot will denote the Euclidean inn
product inR?, i.e.,

2
u-v:= UTVZZUiUi-
i—1

Let O be an open set or the boundary of a bounded domain in the plane. We der
in the following by (-, -)o.0 the inner product in.?(0). Since we will deal with vector
unknowns, we need product forms of some spacdd.iff a function space, we will denote
H := H x H endowed with the product norm and corresponding inner product (when tl
exists). We will use the same notation for the inner product, since it will be clear from t
context and notations used for functions, when scalar or vector functions are used.

2. STATEMENT OF THE PROBLEM

Let © be a bounded domain R? with Lipschitz boundary™, and letQ’ be its exterior,
i.e., the complement of its closureRf. The steady-state exterior Stokes problem consis
of finding a velocity fieldu and a pressure field, defined ortY’, satisfying

—AU+Vp=f in &,
V.-u=0 in &/,
u=2~0 onT,

uandp bounded ag| — oo.

@)

We assume that the support of the external force fundtiam bounded. We have also
assumed that the dynamic viscosity equals 1.

Let ¢ be a simply connected bounded domain containing otnd the support of
and such that its boundaly can be parameterized by a smooth function. Thgsplits 2’
into two subdomaing2™ := Qo N Q" andQ™ := Q. Limits onI'g of functions defined on
Q1 or Q, either in a classical or a weak sense, will be denoted simply by the supersc
+ or —, respectively.

For sufficiently smooth couples of velocity and pressure fields, we can define the ol
and inner stress vector at the boundBsyby the expressions

t£[u, p] := —p*n + 2E[u]*n,

wheren is the unit normal vector iy oriented fromQ~ to Q* (cf. Fig. 1) andE[u] is the
velocity deformation tensor:

Eijlu] := 2\ ax

1 /0y %
3Xj 9X%;

) (,j=1,2.
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FIG.1. Geometry of the problem.

Then we can write (1) as a Stokes problem in the bounded dafrajin

—AU” 4+Vp =f inQ,
V.u =0 inQ, 2
u =0 onT,

coupled with the exterior and homogeneous Stokes problem,

—AUut +Vpt=0 in QF,
V.ut=0, inQt, (3)
u and p bounded a$x| — oo,

by means of the following transmission conditionsIgn

u- =ut,

t{u. pl = t[u. pl. )

The variational formulation of the interior problem follows from completely standard a
guments [13]:

findu~, p~, such that
au=,Vv) —(p7, V-Vogo = (f,Voe + {t[u, pl,VYor, YV )
(,V-U)ge =0, vq,

with
2
alu—,v) =2 Z / Ei,j[u”]Ei [V dx.
ij=17/%"

Note that we used here the identity

2
_ 0E;j ,-[u‘]
Al =2 E —_—
=1 9

which is valid whenv - u~ = 0.
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For the exterior problem we consider the classical formulation on the boundary of
exterior Stokes problems (see [22] or [11]). IK&X, p) be the fundamental solution of the
Stokes operator

1 1
px—y) = EW(X_W’ (6)
__1 _ A kT
UX—y) = — —logix =yl + Xy XY= @)

wherel is the 2x 2 identity matrix. Denote
TH[U, p] := (t°[ug, pa], t5[uz, p2D ',
whereu; are the column vectors dfi. Then the solution of the problem " can be

represented from the bounddry as follows, cf. Theorem 3.2 in [10].

THEOREM2.1. There exist vector and scalar constantsand py such that for almost
allx e QF

U=uO+/r T, [UC =), pC: —y)]tﬁ(y)day—/F UG =yt [u, pl(y)doy,  (8)

and

9
p= po+2/ 8—p(~ —Y)’U+(Y)d0y_/ p(- —y) - t7[u, pl(y) doy. 9
ro 9Ny o

Moreover, agx| — oo

Ut (%) = U6 + Uo + o(%)

and

*(x) = . 1
P (X) = po+ P(X) 6+O(|X|2

wheres := [ t*[u, p] do.

The subscripty in the operatofT* in (8) and in the normal derivative in (9) denotes
differentiation with respect to thevariables. In (8) integration is to be understood compo
nentwise.

Note that, a¥J(x) = O(log(x)) when|x| — oo, the asymptotic behavior imposed in (3)
is satisfied if and only i6 = 0. We also observe that Theorem 2.1 ensures the existence
a well-defined vectoug to whichu tends at large distances. However, in dimension two,
cannot be prescribed a priori. This phenomenon, related only to the bidimensional probl
is known as the Stokes paradox, cf. [10].
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The usual way of dealing with (8) is taking the limit frofr™ to 'y and obtaining an
integral identity relatingi™ andt™[u, p] to each other:

1
§”+_/r TS IUC —y), p(- =y)]u*(y) day

+ / U —y)t*[u, p](y)doy —up =0, on I. (10)
Io

This identity is usually used (see [22]) as a nonlocal boundary conditidg fom problem
(5) to obtain the solution i2—, and Egs. (8) and (9) give representation formulas for th
solution inQ*.

It is worthwhile noting that identity

Ux—yn(y)doy =0, onTy (12)

I'o

is obtained by just writing (10) for the particular solution of the Stokes problem whic
consists of a null velocity field and a constant pressure. Equation (11) is useful to show
the pressure™ is only determined up to an additive constant by (5) and (10) since the
equations remain invariant when we substitpteby p~ + ¢ (which implies that we have
to substitute®[u, p] by t5[u, p + ¢] = —cn + t*[u, p]). Hence, we must add a condition
to fix the pressure. This may be performed in several ways but it is convenient to imp
the restriction

/ t*[u, p] -ndo =0 (12)
I'o

in order to determine the pressure without perturbing the stress solution vector.
Instead of using (10) directly as in [22], we follow [21] and parameterize the auxilial
boundaryl"g. Then, we change all functions (resp. equations) defined on this boundary
the corresponding periodic functions (resp. equations).
Let x : R — R? be a smooth regular 1-periodic parametric representation of the cur
I'o, such that

IX'(s)] >0, VseR, and x(t) #x(s), forO< |t —s| <1

This parameterization dfy allows us to define the inner parameterized trace bptas the
unique extension of
y 1 C®(Q7) —» L2, 1)
U = U[ry(X(+))

to the whole oH(Q~). Theorem 8.15 of [18] proves that: H1(Q~) — HY?is bounded
and onto, wherdd /2 is the completion of the space of 1-periodic infinitely differentiable
real valued functions with the norm

1/2
gl == <Z<1+ |k|2)1/2|©(k)|2> :

kez



BEM-FEM METHOD FOR EXTERIOR STOKES PROBLEMS 691
We will denote byH ~/2 the dual space dfl*/2. The L?(0, 1)-inner product

1
(o ) = /0 MO ds

can be extended to represent the dualitidof/? andH ¥/2. We will keep the same notation
for this duality bracket.
Consider the following integral operators:

Vg = /olV(-,t)g(t)dt, Kg:= /OlK(-,t)g(t)dt, (13)
where
V(s, t) i= UX(s) — X(t)) (14)
and

K(s, 1) i= X (O] Ty [UX(S) — Xx(1), px(s) — x(1))]

_IX®] ) —x®) - ()
I X(S) — X(t)[*

(15)
(X(S) — X(1)(X(s) — x(t) .

These operators are parameterized versions of classical boundary integral operators u:
[22].
Let us denote

A) = X't [u, plx(®)).
It is straightforward from (10) that
1
VA+ <§I - K) yu—ug =0,

wherel is the identity operator. Notice that conditién= 0 reads now

1
/ A(s)ds=0,
0

where the integrals are applied componentwise.
We are now in position to give the global weak formulation of (1),
find (U, p, A) € HL(Q) x L2(Q") x Hy 2, such that
aUu,v) = (p,V-Voo — (v, A) = (f, Voo, WeHHQ)
(@, V-Uoeo =0, Vg e LA(Q), (16)
2V, p) + (yu, p) — 2Kyu, p) =0, Vu e Hy?

1
/ () - n(x(t)) dt = 0,
0
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where the last equation is restriction (12) given in termk.afhe zero mean value condition
for each component oX is included in the space

_1
Ho? ={peH 2:(u.0)=0 VceR?.
Finally, we denoted

HL(Q7) = {ve HY(Q ) :v|r = 0).

3. ABEM-FEM DISCRETIZATION

For simplicity in the exposition, we restrict ourselves to polygonal boundari&iven
h:=1/N, with N a positive integer, let :=i h be the induced uniform partition @t.
We denote by2,, the polygonal domain delimited by the polygonal boundggy whose
vertices argx(tj) :i =1,..., N} andT. Let 7, be a regular triangulation by, formed
by triangles such that: (a) there exists a constant 0 such that for alll € t,, ht < Ch
(wherehy is the diameter of'); (b) any vertex of a triangle lying on the exterior boundary
o Of 92 belongs tox(t) : i =1,..., N}.

Let T be an arbitrary triangle of, with verticesa], a}, andal. We denote byf;" the
side of T opposite tca| and byn; + the unit outward normal td;". We define the space

Pi(T):={p: T —>R:pe Py},
where P, is the space of polynomials of degree not greater than one. We recall that
barycentric coordinate functiong + € Pi(T) (i = 1, 2, 3) are uniquely determined by
Ai,T(aJT) =§j. For 1<i < 3, we introduce the functions
qi,T = )\j,T)"k,Tni,Ta (Iv j’ k) € C3 = {(17 27 3)7 (29 37 1)7 (3’ 15 2)}
It is well-known that the discrete approximation spaces for the pressure and the velo
cannot be chosen independently. They must satisfy the well known inf-sup conditi
Among the numerous stable finite elements for the Stokes problem (cf. [2, 13]) we deci

to use (as in [21]) the one introduced by Bernardi and Raugel in [1] because it requires
degrees of freedom. Indeed, the local discrete velocities space is given by

P(T) :=Py(T) ®@ spand, 1, .1, d3.7)>

and it is easy to see that a functigre P(T) is uniquely determined by the nine degrees of
freedom given by the Lagrange functionals

Nit@® =9¢(@), (=123

plus the moments

m;i t(¢) = / ¢ -njtdo (i=1223).
£
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Moreover, if(i, j, k) € C3,¢ € P(T)andg(@") =¢ (@) = 0,my 1(¢) = 0, thenp| 7 =0
Hence, we may define the global finite element space for the velocity by

Wh = {v e C%2n, R?) : V|t € P(T), VT € )} NHE(Qp).
The corresponding space for the pressure is given by piecewise constant functions:
Qn = 1{d € L*(Qn) : gl € Po, VT € m}.

Finally, we use splines of degree one for the unknown in the boundary

1
Hh={nel?0, 1) : plgi.) € Pox Poi=1,...,N), / pu=0}.
0

Now, we need to define a discrete counterpgrdf the parameterized trace operagor
This discrete linear operator will relate the space of tragél o n) = {V|r,, vV € Wh} of
functions inWj, to the subspac®, c H/? defined by the set of vectorial functions whose
components are continuous, 1-periodic and piecewise linear. It is clear that

Yh - Wh(Ton) — Th

Vlrg, = ¥V

is uniquely determined by the conditiopg/(ti) := v(x(tj)) fori = 1, ..., N. This operator
allows us to ensure compatibility between the finite and boundary element meshes.

Note thaty,, transports only the information given by the linear part of the functions i
Wi (Ion) and ignores the quadratic components. This is not expected to affect the c
vergence properties proven in [21] since the role of the quadratic parts of functions
Wi, is limited to ensure the inf—sup condition between this space@ndhe numerical
experiments of Section 6 confirm that there is no loss of accuracy.

We are now in position to write the discrete problem associated to (16),

find (un, pn, An) € Wh x Qp x Hp, such that
an(un, V) — (pn, V- Vo, — "V, An) = (f, V)o.q,, YVve W
(d, V- Un)og, =0, vq € Qn 17)
(2V An, ) + (PnUn, p) — 2K ypun, p) =0, Vu € Hp
1
/ An(t) - n(x(t))dt =0.
0

The bilinear formay (-, -) is the restriction of(-, -) to Q:

2
an(U, V) :=2§:/Q Ei,j[U]Ei ;[V] dx.
ij=17/n

4. FULL DISCRETIZATION OF THE EQUATIONS

In this section we give a fully discrete scheme based on the application of numers
integration to the equations of the Galerkin method. We begin with the right-hand side
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the first equation of (17). Assuming thitis continuous i, we approximate for all
v e Wy

] mesgT) 3 T
(F, Vo0, > Lav) =Y, —2— > (f-v(a),
i=1

Terh

wherea] are the vertices of .

Note that, in contrast to the method proposed in [21], here all the other integrals o
Qp, can be computed exactly, since the integrands are polynomial functions. In practice
uses quadratures that give the exact value of the integrals. A formula of degree two on ¢
triangle is sufficient for all cases.

The simplest boundary integral term can also be computed exactly by applying
midpoint quadrature formula,

N

(mu, ) =h> " -mut +h/2),  Yue W, Y € Hy,
i=1

wherey; is the constant value @i in (t, tj 11).
We use the bidimensional midpoint quadrature formula to approximate the bilinear for
associated to both the single and double layer potentials. Indeed, we define

N
(K, p) = Ca(omv, ) = h? > Kt +h/2,t +h/2mv(t; +h/2),
ij=1

for all (v, u) € Wy, x Hy. We point out here that we are using a formula that is one degre
less than the one proposed in [21] for this term. This is because the polynomial funct
yhV is also one degree less than the corresponding one in [21].

Numerical quadratures must be handled with care when defining an approximatior
(VA, n) on Hy x Hy because of the logarithmic singularity of the kerivelHere, we
consider the following decomposition of the kernel:

1
V(s t) = - log|s —t|l + B(s, t).

Notice thatB is of clasC* in the domain{(s, t) : |s —t| < 1}. Now, the strategy consists
in approximating the second integral and computing the first one exactly (cf. [16]); i.e.,

e plia . 2|Og|h| —}-Ki,j 2
V(s,t)dsdt~ Vi,j = —h 47| +h°B(tj + h/2, t; +h/2),
i tj T N E

with

1,1
Kkzz// loglk+t —uldtdu
0JO
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and
(i,p)=9G,j=N), ifi—j>N/2
(i—N,j), if j—i>N/2
Notice that the periodicity o¥/(-, -) allows one to use the indic€s, |) instead of(i, )

and avoid the neighborhood of the regif(s, t); |s —t| = 1}. Then we approximate for
all A, IS Hp

N
VA, p) = dh(X, p) = Z li—eri,j)\i.

ij=1

Finally, we approximate the last equation of (17) by using again the one dimensio
midpoint quadrature formula:

1 N
/0 p(® ) dt = Ca(p) i= > i -nX(t +h/2) Vg € Hi.

i=1
We are now in a position to write a fully discrete method for (16):

find (un, ph, Xh) € Wh x Qp x Hp, such that
an(Un, V) — (Ph, V - Voo, — (Vs An) = La(V), Vv e Wh

(qa V. Jh)o,ﬂh = 05 Vq € Qh (18)
20 (An, 12) + (vhih, B) — 2Ch (Y, p) = O, Vi € Hp
th(xn) = 0.

5. THE ITERATIVE METHOD

Let us denote by, My, andZ;, the dimensions oV}, Qy, andHy, respectively, and by
{pi;i=1,...,Np}, {fwm; m=1,..., Mp}and{p;; | =1,..., Z,} the basis foW,,, Qn
andHy, respectively. If we set

Mh Zh

Nh _
Uh00 =D Uipi(0, Ph(¥) =Y Pawm(), An®) = Mp(®)
i=1 m=1 =1

the linear system associated with (18) takes the following form

A BT CT u f
B 0 O pl=[(0]. (19)
C+K 0 -V A 0

and the linear restriction oﬁh may be written as

r'A=0,
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where

Kii = 2eh(mepi. o). Vik = 20h(p, o), fi i= Ln(ei)

and, finally, the vector is defined by

N :=4n(pp).

The system (19) is not symmetric and badly structured $l&:; andC are sparse matrices
while V andK are full. It is clear that the global matrix is too large to be stored and handle
The purpose of this section is to derive a convenient iterative method inspired from [9]
solve (18).

Starting with an initial gueseuﬂ, ,\ﬂ) € Wy, x Hy, form > 1, we construct by induction
the sequencall’, pi", Ai)) € Wh x Qp x Hy, in the following steps:

1. Solve for(u', pi") € Wh x Qp the Stokes problem

an (U, v) — (PR V- V) o = La(W) + (v, AMTY), v e Wh,

(20)
(@.V-u)oq, =0 VQ € Q.
2. Define
um©@) := (1 — O)Hu 4+ ui1,
whered € [0, 1) is arelaxation parameter.
3. Solve forA{' € Hy the integral equation
200 (AT, ) = —(vhUR'(0), ) + 2¢h (hUR' (@), p), Yu € Hy, (21)
subject to the linear restriction
(M) =0. (22)

The previous steps can be interpreted in matrix form as follows:

1. Solve for(u™, p™ € RN x RMn the linear system
A BT\ /um f—Ccram-?
(& %) ()= ("% ) @

um™@) = 1L —-0um+6oum™t (@ e[, 1).

2. Set

3. Solve for(e™, A™) € R#+1

0 r' o™ 0
<r v) (Am) - <—(C—|—K)um(0)>’ (24)
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where restriction (22) has been incorporated into the linear system through the Lagre
multiplier ™, cf. [4].

There are a great number of techniques to solve the linear system of equations (
cf. [8]. Here we simply use the well-knovwaressure matrix metho@ his consists of writing
a linear system of equations for the pressure after elimination of the velocity vector. T
resulting problem has a well-conditioned matBXA~*B" and hence, it may be solved
efficiently by the conjugate gradient method. This entails the solution of a linear syst
with the same matriA at each iteration step of the conjugate gradient algorithm. Sinc
A is symmetric and positive definite, this can be performed by a direct method throug
Cholesky decomposition .

We also use a direct method to solve (24). Note that the matrix of the system is symme
but indefinite (neither positive definite nor negative definite) and the Cholesky decom
sition cannot be used. However, it turns out that it is still possible to factorize the mat
in half the work and space required for the standard Gaussian elimination. There exis
LAPACK subroutine for such a factorization, and the corresponding algorithm is descrik
in [3].

Finally, we point out that we used a special storage of matrceB, C, andK that
ignores the large zero blocks in order to increase the computational efficiency of
method.

6. NUMERICAL RESULTS

We test our numerical technique for a Stokes problem posed in the exterior of an elli
centered at the origin with a major semiaxis of length 2 and a minor semiaxis of lengtf
The analytical solution of the problem is given explicitly by

1 X2 X2 1. X2+ (x2—0.5)?
uiX) = 7|3 2 2 2 599 . nE2
4 [ X{+ (x2—0.5) Xi + (X2 +0.5) 2 Xi + (X2 +0.5)
1 X1(X2 — 0.5) X1(X2 4+ 0.5)
UZ(X) = 2 2 2 2
4 | Xf + (X2 —0.5) X{ + (X2 + 0.5
and

0= [ . . }
P = S I (e —052 X2+ (2 + 052]

A direct calculation shows that the external fofagorresponding to this solution vanishes
identically. Instead, we have a honhomogeneous Dirichlet condition on the dllipsé
this does not add any new difficulty to our problem. Let us consider the ellipse of min
and major semiaxia = 2 andb = 3 as an auxiliary boundaryy.

In all that follows, the iterative method is initialized with zero and iterations are continu

until a reduction of 10° is achieved in the relative residuﬁrl}ﬁ‘—lmfl‘.
We first give a qualitative comparison between the analytical solution and the num
ical solution obtained on a mesh whose parametérss1/64 for the velocity field and

h = 1/128 for the pressure and the stress vector.
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FIG. 2. Analytical (right) and computed (left) velocity fields.
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FIG. 3. Level curves of the pressure, analytical (right) and computed (left).
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FIG. 4. First (left) and second (right) components of the stress vector. The analytical solution is represer
by a line and the computed solution by dots.

The analytical (right) and computed (left) solutions are drawn (with identical scale
in Fig. 2 for the velocity vector field and in Fig. 3 for the level curves of the pres
sure.

The graphics of Fig. 4 compare each component of the analytical stress solution tc
discrete counterpart. The exact and approximated solutions are superposed in each gre
The analytical solution is represented by a line and the computed solution is represente
dots.

TABLE |
Convergence History and Number of Iterations
for Different Values of the Mesh Parameterh

h Iter. lu—UnllLe, P — Prllogy
1/8 18 0.6381 0.9251
1/16 18 0.3472 0.2490
1/32 18 0.1854 0.0925
1/64 18 0.0981 0.0426

1/128 18 0.0514 0.0214
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TABLE Il
Number of Iterations for Different Parameters 0
and Different Auxiliary Boundaries Ty

a=2b=3 22 23 32 50 105
a=3b=4 — — 33 52 109

In Table I, we test the influence of the mesh paramieten the error and the behavior
of the iterative method. To this end, we fix the value of the relaxation paramébed.52
and report the number of iterations and the error with respect to the exact solution in
H1-norm for the velocity field and in the2-norm for the pressure. It is evident from the
results reported in Table | that the convergence rate of the algorithm is independen
the number of unknowns of the problem. However, fixing the mesh parametdy 64, we
can see in Table Il that the number of iterations is sensible to the choice of
We also give in Table Il the number of iterations obtained by assigning different valu
to the minor and the major semiaxisandb of the ellipsel’g. When no iteration number is
reported the method diverges. The results show that the behavior of the iterative methc

influenced by the election of the subdom&in.

Figures 5 and 6 depict the results of Table | and show that, as expected, the error gr

linearly with respect to the mesh paramédter

0-4 T T T T T T

0.35

0.3

0.25

0.2

0.1

0.05

0 1 1 1 1 1 1

0 0.01 0.02 0.03 0.04 0.05 0.06

FIG.5. The velocity error inH*-norm versus.

0.07
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FIG. 6. The pressure error ib2-norm versus.

7. CONCLUSION AND PERSPECTIVES

We presented a method based on a coupling of boundary and finite elements, w
allows one to solve numerically Stokes problems in exterior domains. This method i
simplification of the fully discrete Galerkin scheme analyzed in [21].

Instead of using exact triangulations of the computational domain (and then, cun
triangles asin [21]) we showed here with numerical experiments that a discretization strat
based on polygonal approximations of the curved boundary still maintains the optir
order of convergence of the original method and matches well with the boundary elernr
discretization. We are still able to use the elementary quadrature formulas introduce
[21] to define the fully discrete scheme. This is an important improvement since in a forn
implementation method proposed in [23] the singular boundary integrals are approxime
with adaptative routines using Gauss 10-point and Kronrod 21-point rules, while in our ¢
the bidimensional midpoint formula is sufficient.

We finally proposed an iterative method to efficiently solve the complicated linear syst
of Eq. (19). The algorithm may be viewed as a domain decomposition method (cf. [9]) wh
consists in solving at each iteration step an interior Neumann Stokes problem (by a mi
finite element method) and an exterior Dirichlet Stokes problem (by a boundary elem
method). Here again, in our opinion, this algorithm is more effective than the methodolc
given in [23] to deal with (19).

Itis also worthwhile to mention here that, when compared with the BEM—FEM formul
tions based on separation of variables (see, e.g. [14] and [15]), our method allows one tc
coupling interfaces of arbitrary shape. This is advantageous for problems with anisotrc
geometries.
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Inregard to possible extensions of the method, we point out that our coupling formulat

can be used verbatim for 3-D problems. However, the Galerkin scheme for the intec
operator on the coupling interface is impractical in 3-D since it generates big and de

m

atrices that need prohibitive computational efforts to be assembled. Some fast techni

such as wavelet-type accelerations (cf. [19]) or fast multipole methods are essentia
generate efficient schemes in 3-D. In a 2-D context, we think that our method may

re

garded as a first step to tackle a coupling of Navier—Stokes in the interior with Stoke:

Oseen in the unbounded exterior. Variational formulation for these two types of couplir
have already been proposed in [6] and [7].
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